오늘은 Adaptive Batching에 대해서 알아보려고 합니다. 왜 필요한 지 먼저 알아볼건데, infernce의 경우 하나의 input을 inference 하는 것 보다, batch로 inference하면 훨씬 빠르고 효율적으로 추론을 할 수 있습니다. 하지만 api를 서빙을 하는 경우에는 batch로 inference가 매우 어렵습니다. 예시를 들어보면 챗봇이라고 생각을 하면 intent(의도)를 분류하는 모델을 api로 서빙을 할 텐데, 하나의 질문에 대한 intent만 분류하면 되기 때문에 api에 batch로 inference를 요청할 수 없습니다. api server 입장에서는 한 문장씩 입력이 들어오더라도, 비슷한 시간에 들어오는 문장들을 묶어서 infernce를 해서 결과를 반환해주면 ..